Plot Bivariate Gaussian Mixture Models
Arguments
- sessions
tibble, sessions data set in evprof standard format.
- models
tibble, parameters of the clusters' GMM models obtained with function
cluster_sessions
(objectmodels
of the returned list)- profiles_names
names of profiles
- points_size
size of scatter points in the plot
- lines_size
size of lines in the plot
- legend_nrow
number of rows in legend
- log
logical, whether to transform
ConnectionStartDateTime
andConnectionHours
variables to natural logarithmic scale (base =exp(1)
).- start
integer, start hour in the x axis of the plot.
Examples
library(dplyr)
# Select working day sessions (`Timecycle == 1`) that
# disconnect the same day (`Disconnection == 1`)
sessions_day <- california_ev_sessions %>%
divide_by_timecycle(
months_cycles = list(1:12), # Not differentiation between months
wdays_cycles = list(1:5, 6:7) # Differentiation between workdays/weekends
) %>%
divide_by_disconnection(
division_hour = 10, start = 3
) %>%
filter(
Disconnection == 1, Timecycle == 1
) %>%
sample_frac(0.05)
#> The considered time-cycles are:
#>
#>
#> |Timecycle |months |wdays |
#> |:---------|:------|:-----|
#> |1 |1-12 |1-5 |
#> |2 |1-12 |6-7 |
plot_points(sessions_day, start = 3)
# Identify two clusters
sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE
)
# Plot the clusters found
plot_bivarGMM(
sessions = sessions_clusters$sessions,
models = sessions_clusters$models,
log = TRUE, start = 3
)