Detect outliers
Usage
detect_outliers(
sessions,
MinPts = NULL,
eps = NULL,
noise_th = 2,
log = FALSE,
start = getOption("evprof.start.hour")
)
Arguments
- sessions
tibble, sessions data set in evprof standard format.
- MinPts
MinPts parameter for DBSCAN clustering
- eps
eps parameter for DBSCAN clustering
- noise_th
noise threshold
- log
logical, whether to transform
ConnectionStartDateTime
andConnectionHours
variables to natural logarithmic scale (base =exp(1)
).- start
integer, start hour in the x axis of the plot.
Examples
library(dplyr)
sessions_outliers <- california_ev_sessions %>%
sample_frac(0.05) %>%
detect_outliers(start = 3, noise_th = 5, eps = 2.5)
#> Trying with MinPts = 200 and eps = 2.5
#> Too much nosie (7.3 %). Consider a higher eps.
#> Trying with MinPts = 200 and eps = 3.75
#> Solution found: MinPts= 200 , eps = 2.594