The Baysian Information Criterion (BIC) is the value of the maximized loglikelihood with a penalty on the number of parameters in the model, and allows comparison of models with differing parameterizations and/or differing numbers of clusters. In general the larger the value of the BIC, the stronger the evidence for the model and number of clusters (see, e.g. Fraley and Raftery 2002a).
Usage
choose_k_GMM(
sessions,
k,
mclust_tol = 1e-08,
mclust_itmax = 10000,
log = FALSE,
start = getOption("evprof.start.hour")
)
Arguments
- sessions
tibble, sessions data set in evprof standard format.
- k
sequence with the number of clusters, for example 1:10, for 1 to 10 clusters.
- mclust_tol
tolerance parameter for clustering
- mclust_itmax
maximum number of iterations
- log
logical, whether to transform
ConnectionStartDateTime
andConnectionHours
variables to natural logarithmic scale (base =exp(1)
).- start
integer, start hour in the x axis of the plot.